{ "cells": [ { "cell_type": "code", "execution_count": 6, "id": "7841538a", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 7, "id": "1a5125b8", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('../data/multipleFeatures.csv')" ] }, { "cell_type": "code", "execution_count": 8, "id": "371a40f1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | area | \n", "bedrooms | \n", "bathrooms | \n", "age | \n", "price | \n", "
---|---|---|---|---|---|
0 | \n", "2100 | \n", "3 | \n", "2 | \n", "5 | \n", "320000 | \n", "
1 | \n", "1800 | \n", "2 | \n", "1 | \n", "10 | \n", "250000 | \n", "
2 | \n", "2400 | \n", "4 | \n", "3 | \n", "8 | \n", "450000 | \n", "
3 | \n", "1900 | \n", "3 | \n", "2 | \n", "6 | \n", "300000 | \n", "
4 | \n", "3000 | \n", "4 | \n", "3 | \n", "2 | \n", "500000 | \n", "
5 | \n", "2200 | \n", "3 | \n", "2 | \n", "4 | \n", "350000 | \n", "